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AFOSR-TR"

ABSTRACT

ONE-SIDED R-RELIABLE INTERVALS AND THEIR ASSOCIATED

CONFIDENCES ON THE SUM1 OF TWO CONTINUOUS,
INDEPENDENT, RANDOM VARIABLES

Dr. S. A. Patil

The purpose of this proposal is to define and determine an
R-reliable interval and its associated confidence on the sum of two

continuous, independent, random variables with different scale para-
meters. The relationship between the confidence of the R-reliable interval
on the sum and the confidences of the R-reliable intervals on the sum-
mand variables was also investigated.

The confidence of the R-reliable interval'on the sum was defined,
, and the largest order statistics were chosen which simplified the expres-

sion for the confidence of the R-reliable interval on the sum. The choice
of the largest order statistics led to nonparametric results for the
confidences of the R-reliable intervals on the summand-variables.

Exponential and folded normal continuous distributions were con-
sidered, and numerical values of the confidences associated with the R-
reliable interval on the sum were obtained for selected sample sizes and
slected ratios of the scale parameters. A distribution-free bound for
the confidence of the R-reliable interval on the sum in terms of the
confidences associated with the R-reliable intervals on the summand
variables was cbtained. The monotonicity of the confidence of the R-
reliable interval on the sum was established for specific values of
sample sizes.

8 0i
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1 INTRODUCTION

Wilks [1] investigated the R-reliable interval [L,]

with Neyman-Peason confidence coefficient C such that

U
P[f f(x)dx > R) = C(R) (1.1)

L

where L,U are functions of a random sample from the distri-

bution of x and f(s) is the probability density function

(pdf) of X. He obtained a nonparametric R-reliable interval,

for x. Wilks [2] has given an extensive survey of order

statistics and their applications to R-reliablp intervals

and has given an extensive list of references on the subject.

Guenther 131 discussed the problem of f-reliable intervals

for Normal, Gamma, and Poisson distributi,ns. - .ore recently,

this subje-t nas al-o been investica-ed by Locasso :4] and

Levensee [5]. if L and U are statistics (functi -n of a

r.....m .. 1,) then a dcfinition cf a --

reliable inter,al is civen by

P < x U) R C'R). (1.2)

Tihis definitio-,n is eouivtnt t, thc- 'i i ,e-V

ilks [I]. He referred to thi. intorva a, a 9

tolerance interval." Gua t "- W ,I it "Pcr c-

4 nt :v: . In tije p e c , e ,,o :-n , "e r o : t ''.

thlc r -e :. ,~ ~ r.At ticn ,,- ',r :s ,,r - -~...:..... . = -

A. r r

2,. . . . . . .
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and so we refer to it as an R-reliable interval. Suppose 1

denotes a random variable which is the (neqative of the

logarithm of the) stress on a component of a ccrp lex system

(such as an airplane), and Z denotes the random variable

which is the (logarithm of the) threshold of failure of

components of that type to that kind of stress. Also, the

random variables Y and Z are independent. Then X = Y + Z is

the safety margin of components of that kind to stress of

that type. Also, if Y,Z denote the lifetime of two identical

components of a system in which the second component takes

over when the first fails, then the reliability of the system

can be related to the reliability of the distribution of X.

We are interested in finding an R-reliable interval on the

sum and its associated confidence, knowing the R-

reliable intervals for Y and Z and their associated confi-

dences.

Suppose Yl,Y2,"'Ym, ZI'Z 21 ''" ,Zm denote random

saci es, from the distributions of Y and Z, resnectively.

Let Ty and T be scme statistics from these sar.ies. Theny z

for reliabilities R P > 0, the R-reliable intra! foar Y%, z

is (0,T ) and its associated confidence is given by

-[ P (0 T ) P y] = C (P). (1.3)

Similarly, the R-reliLh 4-.terval or Z is (0,T ) ,.nd its

7confidence i e ctcr:'inen hv
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P[P(O < Z < Tz) > Rz ] = Cz(Rz). (1.4)

If the statistic T is a function of order statistics, then

the confidences in the equations (1.3) and (1.4) can be deter-

mined irrespective of the underlying distributions of Y and

Z; and therefore, they are distribution free. Our objective

is to find an R-reliable interval on the sum X and its asso-

ciated confidence for different distributions and determine a

non-parametric bound on the confidence in terms of the con-

fidences of the R-reliable intervals of the summand variables.

Ashley [6] stated a non-parametric bound on the confidence

for the R-reliable interval on the sum X as

Cx(RyRZ) = P[P(O < X < Ty + TZ) > RyRZ] > Cy(Ry)Cz(Rz). (1.5)

This inequality relates the confidences on R-reliable inter-

vals of Y and Z with the confidence on the R-reliable inter-

val of X. Also it is non-Darametric because it does not assume

anything about the distribution of Y and Z. However, the

product Cy(Ry) (CzRz) is not a satisfactory bound because

Cy(Ry) Cz(Rz) becomes too small. Also, the product RyRz

decreases rapidly and the reliability on X becomes too small.

The above R-reliable interval could be strengthened if in the

inequality (1.5), the product RyRz is replaced by the signi-
4

ficantly larger value min'Ry.Rz}. Thus, inequality (1.5)

becomes
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Cx(min{RyRz}) P[P(O < X < T + T n)] > minzRR z

> Cy(RV)Cz(RZ) . (1.6)

The inequality (1.6) increases the reliability but the

associated confidence CY(PMY)Cz (Rz) is unchanged. Hence, a

larger confidence such as min(Cy(Ry),Cz(R z )) would be more

useful.

In this development, we focus our attention on the

problems of obtaining non-parametric bound on the confidence

of the sum Cx and determining the exact confidence on the R-

reliable interval of X for various distributions of Y and Z.

Sepcifically, section 2 deals with the mathematical develop-

ment of determining c when Y and Z have different scale

parameters.

In the following sections, a procedure fcr comcaring

the confidence of the sum with those of the sun.ands is dis-

cussed. The exact confidences are obtained and tabulated

for various distributions and the confidences are c=Dared

numericallv. The R-reliable interval for distribu-tion on

are briefly discussed. Finally, a concfucion is

qiven and some unsolved problems are mentioned.

2. MATIIEMATI CAL DIVELOQ 7!"T

In this zccticn, we consider the mather.-,tical theory

thit leads to the develorment of the R-reliab!c interv,-l !nd

its :sociated c, nfience.

2u-nose the rando: vari:.:!e Y it dic:t' ue2 cn (:,")

. . . . . . . . . . . . . . . . p . . . . . i n I " i i



ith the probability density function (pdf) 1C f(y/® )-y y

where ey is the scale parameter. Similarly, the random

variable Z is distributed on (0,-) with pdf i izf(Z/ Z

Further, Y and Z are independent. We dcfine : to be the .suR of Y and Z,

then an R-reliable interval on X is to be determined. Let Y,, Y

Y' and ZI, Z2 , ., Zn be random samples of sizes

nr,n from the distribution with pdf's 1/0 yf(y/0 ) ar.d i/Ozf(zO )

respectfully. Let the statistics Ty and Tz be defined as

Ty Ty(Y, Y2' " " "' Y,
Y 2'L

and
TZ T (Zl Z. " Z

Then for a given reliability R> 0, the R-reliable interval

for Z is (0, Ty + TZ) and its associated cc~nience is deter-

.;ined by

C.A,m,n) = P < X < 4- T,] > R] (2.1)
A Y

.... re e = /% > 1. :ote t'-'at if = < " , nd Z are.y -

interchanged and this interchanae results in A > 1. Since

X Y + Z, we have

C.I7A,m,n) = K? [C - v + + T] I]

=~~~~ TY'[ T_ _ -
Lo - .+ +

Y "Z

Y Z 7
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Cx(A, m, n) = P[P[O < y + AZ < _.. + A.:,] RI (2.2)

Ty , T

where Y - Z= Z_ , T and Tz Z. The randoma y = z & Y z

variables Y' and Z' are independent and identically distri-
I I

buted. The distributions of T and T do not depend on ey,

e and are the statistics from the random samples from the
I I

distributions of Y'and Z'. For fixed value of Ty + ATz,

equation (2.2) can be expressed in terms of quantile of the

distribution of Y' + AZ' = X'. The distribution of X' can

be written as

G(x') = P[X < x'] = PlY + AZ < x'] (2.3)

,hich is the probability of y' and z lying in the tri-

angular region sho-:n in figure (2.1).
z,

I

-. > yI

Since Y' and Z are independent and identicallv disri ..td,

the ecuation (2.3) is ep:rcssed in n. intcrai f, __,n as

G(x )f= f(y)f(z) Lydz (2.4)
0.' V +1 Z .X

Intecrating on y, we c) tain



7

G(x') = f f(z)F(x - Az)dz (2.5)
0

Similarly, integrating equation (2.4) with respect to z,

first we find

x
G(x ) = f f(y)F(x- AV)dy (2.6)

0

-.here F is the distribution function of Y'. Equations (2.,5)

and (2.6) can be used to find the quantile of the distribu-

tion of X. Let A(R) = & be the Rth quantile of the distri-

bution of X . Then & can be determined by

G(E) = P[0 < X < = R (2.7)

For a given T' and TZ , the statement

I S

P[0 < Y + AZ < Ty + AT'] > R (2.8)

implies Ty + ATZ > . Hence, the confidence CX(A,n,n) can

be written as

I I

C (A,m,n) = PITy + ATZ > 7

= 1 T + AT' < (2.9)

ThIere are a nuhcr of choices for the statlicc- -- rd! T'

such as range, midrange, order statistics, rme_:n, etc.

ever, One J' usual.ly interested in .:,o.inc ,hct pcrccntrge

c f the lrC'bi-jty i I : .el0': the ner an or th,- 1,ir....-t

stac.t i s tics.
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In this development, the largest order statistics are

chosen because the corresponding R-reliable interval for Y

and Z are distribution free. Also, the associated confidence

of the sum X could be compared with those of Y and Z. Then,

the R-reliable interval for X becomes (0, T(M) + T (n), w.here

T(n) and T(n) are the largest order statistics from the

random sample from the distributions of Y and Z. The

confidence associated with this interval is

CX (A,m~n) = - (Tm) + AT n ) . (2.'

T~n

where T T (in) and T - The-"probability
() y (n) 9Z

PT(m) + AT - ] implies that T(m) and T( lie inside
(i) n) (irnn)li nsd

the triangular region of figure (2.2).

*1T In
(i(n)

V Tm )

Then equatior. (2.10) reduces to

= i - n ' F z~j - [ ( - z J - .C\.(A,m,n) , -n r~. "?-. ] 7()d- 2.1!)

or cuivalcntl'i

_3 . '
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CV(Am,n) = ! - m [Fly)] (- f)] (y)dy (2.12)

Remark: For given sample sizes m and n, the confidence

CX(A,,m,n) depends only on the parameter A, and therefore,

C_ (Amn) could be computed for different values of m,n,A

and various distributions.

3. COMPARISON OF CONFIDENCES

In this section, we compare the R-reliable intervals

for Y and Z with X. The R-reliable interval depends on

reliability R and the sarple sizes. For this reason, we

compare the R-reliable intervals for a given value of R.

For a given value of R, this is accomplished by comparing

th correspcnding confidences associated with these intervals.

The distribution free R-rellable interval for Y for a

ien. :r-=pl size ms (0,7 ( ) with the associated confi-

CV 1 -- P0 < 7 K Y ) R 1 - . (3.1)

Similarly the R-reficZle interval for Z is (0,E( ) with

- C, -:.ce C°,

*C. l F - n (3..2)

"un: '~y~ ,we c ic I n e c lc.:i:-

S\en ,.Ilc o , if thc c
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Definition 2. An R-re'iable interval i1 with ccnfidence

C1 (A) is said to be better than another P-

reliable I2 with confidence C2 A) if for a
aiven value cf R, C1 (A) > C2 () for al! A,
and C, (A) > C2 (A) for some A.

Definition 3. Two-R-eliable _ntervals I !I and 12 with

associated confidences C1 (A) and C2 (A) are

as mptoticallv eruivalent if

lim C (A) = lir C 2 (A) (3.3)
-i 2RA-~~ A

Lenza 1. The limit as A approaches - of A/A is Fry (R)
A/

Proof: We have

jA f(z)F(- - A)dz = R

0i AA A

Iim f(z)F( - Adz R
A-M 0

Let lim-A thenA '

i ,; F --A - )
-7Z (z r'J

z

hence

-II" ~ t,, ,t etno the c ,,] -b e 4 : ra e, 7

- . -- .,. ~ 1 • -.,.

cn2h

r; %
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and from emma 1, lim (7A A) =
A~

Taking the limit -s P.-- cf equation (2.6),

lim(C (A,m,n)) = 1 - n r f ,z) [F (z)] [F(A - z) Idz
Xl x A

1 - Z f..z) [F(z)n-iF()iz
0

Z .(z),~n- !F- dz
= 1 - n f(z)[Fz)]ndz

0

00 =1-[F(rZ] = z Rn = C z n) .(3.7)

Lerm'na 2: If h(X) and g(X) are increasing functions of a

random variable X, then the covariance between hX) and g(X)

is positive.

Proof: Let x be a value of x such that

X[) - EjgCX)]< 0 for y <

Then

cov [h (::) ,q (::) ) = X :) .7(:) - E Fgc)])dF Cx)

+ , .. () (C

+ F h (z-' (cj(x) - ~ g{::) ] )dlPt:)

0x

're 1() ia ( :. -a , :  le

0
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0 f  (?(x)E[g(X)])dF(X)=h(x0 ) f (a(X) - E[g(X) )dF(X) = 0
x9  -00

where F(X) denotes the distribution function of X.

Corallarv 1. If h(X) is an increasing function of X and g(X)

is a decreasing function of X then the covariance between

h(X) and g(X) is negative.

Proof: We note that -g(X) is an increasing function of X

and cov(h(X), -g(X)) > 0 from lemma 1. Hence,

coy (h(X) ,g(X) ) > 0.

Theorem 2. For any sample size m and for n =1l, the R-

reliable interval for X is better than the R-reliable interval

for Z.

Proof: From equation (2.11)with n = 1, we obtain

SA /A

Cx(A-,m,1) = 1 - f f(z)[F(EA - A )]mdz (3.8)
0

In order to show that R-reliable interval for X is

better than that of Z, we show that C x(A,rn,n) is a decreasinc

function of A.

d /A rd Cx(Aml) = -m f(z) [F(r-Az)]m- f(A-z) ( A - z)dz
0 (3)

T' find dA/dA, ,.,e let m 1 1 in eauaticn (3.8). Theon

Cx (A,I1) 1 - A/A f(Z)F(r - Az)dz' -A
0

= 1 - R for ll A. (3.0)
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dAA(z A A )d
dA 0A

Therefore

E A/A-f(f(A - Az)dz

d- I (Z)f(A P Az)dz

d A 0 (3.111)
AA AA (z)f('A Az)dz

0

d
Now (Cx (A,m,I)) < 0 if

A /Azf(z)[F(CA- Az)]- f - Az)dz

A 0 (3.12)
dA- EA/A M-i

i f(z)[F( A - Az)] ( - Az)dz
0

or
or

~Azf(z)f( A - Az)dz f z[F( A - Az)]~ _-zf5 - Az)dz
E > 0

Af(z)f((A - Az)dz JA [F(A - Az)) (z)(A - Az)dz
b A 0A - A '

eqau iva lently

~A/AA [F( - .z)] (-(Mff(;- A z z

/Aj
0

A

(z ( Cdz

-I0 A 'Ai'

L f z) f( "

0
(z .7- - Z .,

f.
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or cov(z,[F( A - Az)]'- l) < 0 Since [F(A - Az)] -  is

a decreasing function of z, from Corollary 1,
rn-i d

cov(z,[F( A - Az)] ) < 0. Therefore !(Cx(A,m,l)) < 0 and

C x (A,in,l) is a decreasing function of A. Also from Theorem 1,

C x(A,m,I) is asymrptatically equivalent to C Z(1). Hence R-

reliable interval for X is better than that of Z.

Remark: For n 1 and any m, Cx(A,m,l) is a decreasing

function of A for A > 1. Hence CX(l,m,i) is the maximurm

value that C x(A,m,1) can attain. Also, A = 1 implies that Y

and Z are identically distributed, therefore, CX(I,m,l) is

the upper bound for Cx(A,m,Il).

Theorem 3. For any sample size n and for m = 1, the R-

reliable interval for X is better than the R-reliable inter-

val for Y.

Proof: ;:e find

1 - C..(A l,n) = n f [F(z)] n-I[F(A - Lz)]f(z)dz
0 A

A ,n- n
* • A - 3 °4

A

From the right hand side of ecquation (3.14), it is clear

tha t... i..I eral is a cecrecu7nc funtion cf .,

J'r : [F . 7)%-l ( Z ( z -- Z . . ... . .

o n ,-

. . .. . ... . . f zm.. ... 1 ... .. . . . . . .. . . .... .
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Thus,

C x(A,I,n) > 1 - R Cy(1).

Remark: Theorem 2 could be proved the same way as

Theorem 3. It can be shown the Cx(A,ln) is an increasing

function of A, and C x(A,I,n) is the minimum value that

C x(A,I,n) can attain.

Now the generalcase where the sanple sizes m and n

are both greater than one is considered. For this purpose,

we prove the following lemma.

Lemr..a 3.3. For any m and n, Cx(A,m,n) is an increasing

function of m and n.

Proof:

1A/A n-r
1 - C (A'In) = n [F(z)] [F(A - Az)] mf(z)dz. (3.15)

0

Since F( A - Az) < 1 for all z < -- , then [F(r A - Az)] is

a decreasing function of m. Nence, C x(A,nn) is an increas-

ina function of m. Equivalently from equation (7.L2), we can

wxrite

1 - Cx(A,n,n) =  [F(y)]-[F(-)]nf(y)dy. (3.16)
* 0 A 6

Again, since F(- ) < 1 for zll Y < ' then
A

[F(- --)]n is a decreasing function of n. Therefore

Cx(A,m,n) is an increasina function of n. Thus, C X(A, ,n)

is an increasing function of mi and n.

I
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Theorem 4. For any sample sizes n and n greater than 1, the

R-reliable interval for the sum is better than the R-

reliable interval for the summand with the smaller sam ple

size.

Proof: S = min(re,n), then from Lemma 3.3 we get

Cx(A,m,n) > Cx(A,ss) for all A. (3.17)

Since C x(A,rn,n) = PIP[O < X < Y(m) + Z (n) > R]

X() (n)]= [ X m+AZn] > R]

(M) +AZ(n) > E0

= -1- P[Y' + AZ n(in)(n) <
and C x(A,ss) = P[P[O < X' < Y's) + AZ(s)-] > R)

SP[Y(s) + AZ(s) > 4]

= 1 - P[Y'( + AZ(s) (s) <

Then the inecuality (3.17) becomes

C CA,,n) = 1 - P [Y'(m)+ n) - Ys ++ Al -AXCm Z(nl) S +s) (S)

1-CNI(A,,,n) P[Y' AV Z] 1Y + _Z

Cm) (n Ls (s)

(3.:L8)

Since Y + Y i 'here X is the l-roest of the
") (s) (s) CS)

-et Y + ;Z! Zm + AZ, then
1 Z1 , 2 2'm n

[(s - '(s) + i-

-- _- [)

1, Y 4 P. ", I- C
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4. CONFIDENCES ON THE R-RELIABLE INTERVALS
FOR EXPONENTIAL AND NORMAL DISTRIBUTION

The bounds considered in section three are nonparametric and

can be used for all continuous distributions on (0,-). However the

bounds do not give the confidences for specific values of A and

other parameters. In this section, confidences Cx(A, m, n) of the

R-reliable interval for the sum X - Y + Z is calculated when Y, Z

have exponential or normal distributions. These distributions are

widely used in applications and hence are chosen in finding confi-

dences. Since we are considering the distribution on (0,-) for

the normal case, we consider the folded normal distribution. The

p. d. f. of the folded normal equation with scale 1/a is given by

f(y) - _ ( / ) 0

In order to find CX(A, m, n) at R = .9, the 90th percentile

of the distribution of X' = Y' + AZ' is fcund using distributions

of Y' and Z'. Here Y', Z' are distributions with scale parameters

one. The integral expression for (2.11) is used to calculate the

confidences C X (A, m, n). The sample sizes m and n chosen to be

m - 1, 2, 4, 6, 8, 10, and n - 1, 2, 4, 6, 8, and 10, and A is taken

from 1 to 100 for exponential distribution and A is taken from 1

to 20 for normal distributions. For larger values of A, in the

case of normal distribution, the confidences C x(A, m, n) do not

vary much. We first consider the exponential distribution.
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4.1. ExooncnLial Distribution

The pdf of the random variable Y' distributed as exponential is

given by

f(y) ep(-y) , 0 < y, <

= 0 elsewhere , (-4.1j

and the distribution function of Y' is

FyA()= 0, y < 0

= 1 - exp(-y) , 0 < y, < 0 (4.2)

The distribution of Z' is identical to that of Y'. Using the independence

of Y' and Z' and their pdf's, the distribution function of X' = Y' + AZ'

is found to be

Gx . (x') = enp(-yA) exp(-z') dy" dz"

0o 0

= I + exp(-X') - A exp(-x'/A) 0 < x , (4.3)A - I '-

and G. (x) is zero for x' < 0. With x' = the 90th percentile of X'

is fcund by

+exp(-r 9) A emp'-r /A)
X.9 

A- -.9

and the confidence CX(n,n) using Equation (2.11) and the distributio'n

functions and pdf's of Y' and Z' becomes

• . . . " '' . . ..I. .
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(m, = - nf A : - ex(-z') p .9

e ::-p (- z ') d z " . 4 .5 )

.9 for selected A, m, and n are tabulated in
values of C (m,n) and e ablaedi

7able 1.

. Folded Normal Distribution

Let Y' and Z* be independent and identically distributed as

folded normals on (0,.). The pdf of Y' is given by

k x C <y <

0 elsewhere , (4.t)

am th ~i£ribuzio~ :...ctlo of , is

FY/) =0, " < 0,

= e::. p(- t 2  dt , C < v < 0C 147)

^ 2,2
'0
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Table 1. The Confidence Cx(A,m,n) of the R-Reliable Interval
on the Sum of Two Continuous Random Variables with

Exponential Distributions with 90 Percent Reliability

n= 1 A im= 1 2 4 6 8 10

1. 3.89 0.10 0.16 0.25 0.33 0.39 0.44
2. 5.94 0.10 0.13 0.18 0.21 0.24 0.26

3. 8.12 0.10 0.12 0.15 0.17 0.18 0.20
4. 10.36 0.10 0.11 0.13 0.15 0.16 0.16
5. 12.63 0.10 0.11 0.13 0.13 0.14 0.15
6. 14.91 0.10 0.11 0.12 0.13 0.13 0.14
7. 17.20 0.10 0.11 0.12 0.12 0.13 0.13
8. 19.49 0.10 0.11 0.11 0.12 0.12 0.13
9. 21.78 0.10 0.11 0.11 0.12 0.12 0.12
10. 24.08 0.10 0.11 0.11 0.12 0.12 0.12
20. 47.08 0.10 0.10 0.11 0.11 0.11 0.11
30. 70.09 0.10 0.10 0.10 0.10 0.11 0.11
40. 93.12 0.10 0.10 0.10 0.10 0.10 0.10

50. 116.14 0.10 0.10 0.10 0.10 0.10 0.10
100. 231.26 0.10 0.10 0.10 0.10 0.10 0.10

O 0.10 0.10 0.10 0.10 0.10 0.10

n: 2 A n= 1 2 4 6 3 10

1. 3.89 0.16 0.24 0.36 0.45 0.52 0.57
2. 5.94 0.18 0.23 0.33 0.35 0.39 0.42
3. 8.12 0.19 0.22 C.27 0.30 0.32 ,.--4
4. 10.36 0.19 0.21 0.25 0.27 0.28 0.30
5. 12.63 0.19 0.21 0.23 0.25 0.26 0.27
6. 14.91 0.19 0.21 0.23 C'.214 .25 0.26

7. 17.20 0. 19 0.20 0.22 0.Z3 0.24 0.25
8. 19.149 0.19 C.20 0.22 0.23 0.23 C.24
9. 21.78 0. 19 0.20 0.21 0.22 0.23 0.23

10. 24.08 0 .19 0. 20 C.21 C.22 2.22 0.23

20. z47.08 0 i9 0.19 0.20 0.20 0.21 0.21
30. 70.09 0. 19 0.19 0.20 0.20 C.20 0.20
40. 93.12 0. 19 0. 19 0.20 0.20 0.20 D.20
50. !16.14 0. 19 0 19 0.19 0.20 0.20 0.20

100. 231.26 09 0.19 0.19 0.19 929 3.19

Do , o. 19 !.1 C.19 0.19 0.19 0.19

"WIR-4, OP 40- W--I
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Table 1 . (continued)

n 4 A 1 n= 1 2 4 6 8 10

1. 3.89 0.25 0.36 0.50 0.60 0.67 0.72
2. 5.94 0.32 0.39 0.48 0.54 0.58 0.62
3. 8.12 0.33 0.38 0.45 0.49 0.52 0.55
4. 10.36 0.34 0.38 0.42 0.46 0.48 0.50
5. 12.63 0.34 0.37 0.41 0.43 0.45 0.47
6. 14.91 0.34 0.37 0.40 0.42 0.43 0.45
7. 17.20 0.34 0.36 0.39 0.41 0.42 0.43
8. 19.49 0.34 0.36 0.38 0.40 0.41 0.142
9. 21.78 0.34 0.36 0.38 0.39 0.40 0.41

10. 24.08 0.34 0.36 0.38 0.39 0.40 0.40
20. 47.08 0.34 0.35 0.36 0.37 0.37 0.37
30. 70.09 0.34 0.35 0.35 0.36 0.36 0.36
1in 93.12 0.34 0.35 0.35 0.35 0.36 0.36
50. 116.14 0.34 0.35 0.35 0.35 0.35 0.36
100. 231.26 0.35 0.35 0.35 0.35 0.35 0.35

co 00. 34 0.34 0.34 0.34 0.34 0.334

S= 6 A rm= 1 2 4 6 8 10

1. 3.89 0. 33 0.45 0.60 0.69 0.76 0. 83
2. 5. 14 0.42 0.50 0.60 0.66 0.71 0.74
3. 8.12 0.45 0.51 0.58 C.62 0.65 0.68
4. '10.36 0.146 0. 50 0.56 0. 59 0.62 0.64
5. 12.63 0.46 0.50 0.54 0.57 0.59 0.61
6. 14.91 0.146 0.149 0.53 0.55 0.57 0.58
7. 17.20 0.47 0.49 0.52 0.54 0.56 0.57
8. 19.49 0.147 0.149 0.52 C. 53 3.55 0.56
9. 21.78 0.47 0.49 0.51 0.53 0.54 0.55
'0. 24.08 0.47 0.49 0.51 0.52 0.53 0.54
20. 47.318 .47 0.48 0. 49 0.49 0.50 0.50

30. -0.09 3.147 0.147 0.148 0.149 0.49 0. 49
40. 93.12 0.47 0.47 0.48 0.48 0. 48 0.49

0. 16.14 0.47 0.47 0.48 0.48 0.48 0.48
"C. 231.26 ). 17 0.47 0.47 -. 47 0.47 0.48

0. 47 0.47 D.47 0.147 0.147 0.47

• I- -. . . .- .. ,..-, . . : ,,.,, ;.,.-, .% . .d~
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Table 1 . (continued)

n= A 1 I 2 4 6 8 10

1. 3.89 0.39 0.52 0.67 0.76 0.82 0.86
2. 5.94 0.51 0.59 0.69 0.75 0.79 0.82

3. 8.12 0.54 0.60 0.67 0.72 0.75 0.77
4. 10.36 0.56 0.60 0.66 0.69 0.72 0.73
5. 12.63 0.56 0.60 0.64 0.67 0.69 0.71
6. 14.91 0.56 0.60 0.63 0.66 0.67 0.69
7. 17.20 0.57 0.59 0.63 0.65 0.66 0.67
8. 19.49 0.57 0.59 0.62 0.64 0.65 0.66
9. 21.78 0.57 0.59 0.61 0.63 0.64 0.65

10. 24.08 0.57 0.59 0.61 0.62 0.63 0.64
20. 47.08 0.57 0.58 0.59 0.60 0.60 0.61
30. 70.09 0.57 0.58 0.58 0.59 0.59 0.59
40. 93.12 0.57 0.57 0.58 0.58 0.59 0.59
50. 116.14 0.57 0.57 0.58 0.58 0.58' 0.58

1:00. 231.26 0.57 0.57 0.57 0.57 0.58 0.58
O 0.57 0.57 0.57 0.57 0.57 0.57

n 0 A m: 1 2 4 6 8 10

1. 3.39 0.44 0.57 0.72 0.80 0.36 0.69
2. 5.94 0.53 0.66 0.76 C.81 0.34 0.87
3. 9.12 0.62 0.68 0.75 0.79 0.81 0.83
4. 10.36 0.63 0.68 0.73 0.76 0."9 0.53
5. 12.63 0.64 0.65 0.72 0.75 0.77 0. 78
6. 14.91 0.64 0.68 0.71 0.73 0.75 0.76
7. 17.20 0.65 0.67 0.71 0.72 0.74 0.75
S. 19.49 0. 65 C. 67 0.70 0.72 0.73 C. 74
9. 21.78 0.65 C.67 0.69 0.71 0.72 0.73
10. 24.08 0.65 0.67 0.69 0. 70 0.71 0.72
23. 47.08 0.65 0.66 0.67 0.68 0. 3 0.69
30. 70.09 0.65 0.66 0.67 0.67 0.67 0.68
40. 93.12 0.65 0.66 0.66 0.57 0.67 C.67
50. 116.14 0.65 0.66 0.66 0.66 G.66 C.67

120. 231.26 0.65 0.65 2.66 0,66 0.66 0.66
CO 0.65 3.65 0.65 0.65 0.65 0.65

_ _______
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L be -- ,e distribution function of X' ' Y AZ'; then

Ux(x is found to be

(x')= 0 , x < 0

" xA-Az

=0 f - 2 -exp( y. 2 ) . exp(- z. 2 ) dy' dz,

r 0x < X, (4.8)

.quation 4.o.) is used to find the 90 th percentile of the distribution of

X' .. The expression for Cx(m,n) using Equation (2.1i) and the pdf and

the dstzi*ution function of Z' becomes

ACf 2 exp(- t 2  d n

Cx~~mc-Az = m -"0

exp(-2) dt2 -exp(- z'') dz • (4.9)

7he ,alue c and C ,r are calculated for selected A, m, and n

:hrcugh F[uations (4.8 ) and (4.9). These values are seen in Table 1.

The noraL: distribution is the last of the sy-metric distributicns

•'h~h are considered hcre, because it is by far the L-ost widely used

s%-zCtrc dis.r'S ution. This distribution is also folded so that it

:oul" be used i. this study.

- 4
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Table 2. Th, Confidence C (A,mn) of the R-Reliable Interval
on the Sum of Two Continuos Random Variables with Folded
Normal Distributions with 90 Percent Reliability

n= 1 A -a z 1 2 4 6 8 10

1. 2.77 0.10 0.17 0.26 0.32 0.37 0.42
2. 4.27 0.10 0.14 0.18 0.21 0.23 0.25

3. 5.87 0.10 0.13 0.15 0.17 0.18 0.19
4. 7.49 0.10 0.12 0.14 0.15 0.16 0.17

5. 9.13 0.10 0.12 0.13 0.14 0.15 0.15
6. 10.77 0.10 0.11 0.13 0.13 0.14 0.14

7. 12.42 0.10 0.11 0.12 0.13 0.13 0.14
8. 14.06 0.10 0.11 0.12 0.13 0.13 0.13
9. 15.71 0.10 0.11 0.12 0.12 0.13 0.13

10. 17.36 0.10 0.11 0.12 0.12 0.12 0.13
20. 33.88 0.10 0.11 0.11 0.11 0.11 0.11

O 0.10 0.10 0.10 0.10 0.10 0.10

nz 2 A M- 1 2 4 6 8 10

1. 2.77 0.16 0.26 0.39 0.47 0.54 0.59
2. 4.27 0.18 0.24 0.31 0.36 0.39 0.42
3. 5.87 0.18 0.23 0.27 0.30 0.32 0.34
4. 7.49 0.19 0.22 0.25 0.27 0.29 0.30
5. 9.13 0.19 0.21 0.24 0.25 0.27 0.28
6. 10.77 0.19 0.21 0.23 0.24 0.25 0.26
7. 12.42 0.19 0.20 0.22 0.23 0.24 0.25
8. 14.06 0.19 0.20 0.22 0.23 0.24 0.24

9. 15.71 0.19 0.20 0.22 0.22 0.23 0.23
10. 17.36 0.19 0.20 0.21 0.22 0.23 0.23
20. 33.88 0.19 0.19 0.20 0.20 0.21 0.21

0.19 0.19 0.19 0.19 0.19 0.19

SI
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Table 2 (continued)

= 4 A m: 1 2 4 6 8 10

1. 2.77 0.25 0.39 0.55 0.65 0.72 0.76
2. 4.27 0.31 0.40 0.51 0.57 0.61 0.64
3. 5.87 0.33 0.39 0.46 0.51 0.53 0.56
4. 7.49 0.33 0.38 0.44 0.47 0.49 0.51

5. 9.13 0.34 0.37 0.42 0.44 0.46 0.47
6. 10.77 0.34 0.37 0.40 0.43 0.44 0.45
7. 12.42 0.34 0.37 0.40 0.41 0.42 0.43
8. 14.06 0.34 0.36 0.39 0.40 0.41 0.42
9. 15.71 0.34 0.36 0.38 0.40 0.41 0.41

6 10. 17.36 0.34 0.36 0.38 0.39 0.40 0.41
20. 33.88 0.34 0.35 0.36 0.36 0.37 0.37
CO 00 0.34 0.34 0.34 0.34 0.34 0.34

n: 6 A m= 1 2 4 6 8 10

1. 2.77 0.32 0.47 0.65 0.75 0.82 0.85
2. 4.27 0.42 0.52 0.64 0.70 0.74 0.77
3. 5.87 0.44 0.52 0.60 0.64 0.67 0.70
4. 7.49 0.45 0.51 0.57 0.61 0.63 0.65
5. 9.13 0.46 0.50 0.55 0.58 0.60 0.61
6. 10.77 0.46 0.50 0.54 0.56 0.58 0.59
7. 12.42 0.46 0.49 0.53 0.55 0.56 0.57
8. 14.06 0.46 0.49 0.52 0.54 0.55 0.56
9. 15.71 0.46 0.49 0.51 0.53 0.54 0.55

10. 17.36 0.46 0.48 0.51 0.52 0.53 0.54
20. 33.88 0.46 0.47 0.49 0.49 0.50 0.50

00 0.47 0.47 0.47 0.47 0.47 0.47
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Table 2 (continued)

8 A m 1 2 4 6 8 10

1. 2.77 0.37 0.54 0.72 0.81 0.86 0.90
2. 4.27 0.50 0.61 0.72 0.78 0.82 0.85
3. 5.87 0.53 0.61 0.70 0.74 0.77 0.79
4. 7.49 0.55 0.61 0.67 0.71 0.73 0.75
5. 9.13 0.55 0.60 0.65 0.68 0.70 0.72
6. 10.77 0.56 0.60 0.64 0.67 0.68 0.69
7. 12.42 0.56 0.59 0.63 0.65 0.67 0.68
8. 14.06 0.56 0.59 0.62 0.64 0.65 0.66
9. 15.71 0.56 0.59 0.62 0.63 0.65 0.65

10. 17.36 0.56 0.59 0.61 0.63 0.64 0.65
* .I 20. 33.88 0.56 0.58 0.59 0.60 0.60 0.61

O 0.57 0.57 0.57 0.57 0.57 0.57

n 10 A m= 1 2 4 6 8 10

1. 2.77 C.41 0.59 0.76 0.85 0.90 0.93

2. 4.27 0.56 0.68 0.79 0.84 0.87 0.90
3. 5.87 0.61 0.69 0.77 0.81 0.83 0.85
4. 7.49 0.62 0.69 0.75 0.78 0.80 0.82
5. 9.13 0.63 0.68 0.73 0.76 0.78 0.79
6. 10.77 0.64 0.68 0.72 0.74 0.76 0.77
7. 12.42 0.64 0.67 0.71 0.73 0.75 0.76
8. 14.06 0.64 0.67 0.70 0.72 0.73 0.74

9. 15.71 0.64 0.57 0.70 0.71 0.73 0.73
10. 17.36 0.64 0.67 0.69 0.71 0.72 0.73
20. 33.88 0.64 0.66 0.67 0.68 0.68 0.69

CO 00 0.65 0.65 0.65 0.65 0.65 0.65

I I.
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5. CONCLUSION AND RECOMMENDATIONS

The numerical calculations enable us to find the values for the

confidences on the sum of two continuous, independent, random variables

for various distributions. These values of C x(A,m,n) are useful when

the exact confidences are required. But, to obtain these values not

only the ratio of the scale parameters of the sunmand variables have to

be estimated but also their distributions have to be known.

A nonparametric bound for the confidence of the R-reliable

interval on the sum was found based on the largest order statistics.

This was the result of Theorem 4. stating that

C x(A,m,n) > min [Cy(m), Cz(n)] = min (1 - Rm, I - Rn)

which depends only on the sample sizes and the reliability but not on the

estimate of the variances or the distributions of Y and Z. Also, the

monotonicity of C (A,m,n) with A was proved for n = 1, 1 and forx
m = 1, n > 1. This research could be extended by considering a two-

sided R-reliable interval for Y and Z and, therefore, a two-sided

R-reliable interval for their sum X. Other statistics such an thV r:nge

or thm , [( I can be u -cd which mihit lead to a better

* bound for the conf idericc of the R-reliable intervl on the sum. The

tables of the va. ues of C x(A,ri,n) s;,st that tht- conf "Jdnce on the url

i., decreasing wiih A for equal sin .1te s zizc' rt:i ter tha onc. This

0m
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-esuL would be useful Lecause i.t suggests that for equal sample sizvs

oreater than one, the best confidence on the sum X is obtained when the

distributions of summand variables Y and Z are identical. Study of

particular classes of distributions such as the Exponential class

defined on (0, -) or the Symmetric class defined on (- , =) might lead

to more specific results for the confidence on the sum which may be use-

ful fcr those distributions.
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